Your World by Design
Fifth Grade: Gardens and Landscape
School Tour Packet

CUMMER MUSEUM
ART | GARDENS | EDUCATION
TABLE OF CONTENTS

Introduction 3
Vocabulary 6
Works of Art & Gardens 8
 Entropy 8
 Upper Olmsted Garden 10
 Lower Olmsted Garden 11
 Italian Gardens 12
Activities 14
Supplemental Information 25
Resources 29
INTRODUCTION

With its riverfront campus on the St. John’s River and formal gardens, the Cummer Museum includes the integration of art and science in its mission. Students will explore the Cummer Gardens through hands on activities, then examine and discuss select artwork that raises awareness about the importance of the St. John's River in the community and its connection to the history and living art of the Cummer Gardens. Fifth grade students will explore Landscape Architecture as a career and as a design toll to meet the needs of the world around them. This tour is designed in line with NGSSS.

VISUAL ART:
- VA.5.F.2.2 Explore careers in which artworks and utilitarian designs are created.
- VA.5.H.3.1 Discuss how skills learned through the analysis and art-making process are used to solve problems in non-art areas.
- VA.5.H.2.1 Compare works of art on the basis of style, culture, or artist across time to identify visual differences.
- VA.5.H.1.1 Examine historical and cultural influences that inspire artists and their work.
- VA.5.C.3.1 Use the structural elements of art and organizational principles of design when engaged in art criticism.
- VA.5.F.2.3 Discuss contributions that artists make to society.
- VA.5.H.1.4 Explain the importance of artwork to show why respect is or should be given to the work of peer or specified professional artists.
- VA.5.H.2.2 Describe the ways in which artworks and utilitarian objects impact everyday life.
- VA.5.H.2.3 Discuss artworks found in public venues to identify the significance of the work within the community.

SCIENCE:
- SC.5.N.1.1 Define a problem, use appropriate reference materials to support scientific understanding, plan and carry out scientific investigations of various types such as: systematic observations, experiments requiring the identification of variables, collecting and organizing data, interpreting data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions.
- SC.5.N.1.5 Recognize and explain that authentic scientific investigation frequently does not parallel the steps of “the scientific method.”
- SC.5.N.1.6 Recognize and explain the difference between personal opinion/interpretation and verified observation.
- SC.5.N.2.1 Recognize and explain that science is grounded in empirical observations that are testable; explanation must always be linked with evidence.
• SC.5.L.15.1 Describe how, when the environment changes, differences between individuals allow some plants and animals to survive and reproduce while others die or move to new locations.
• SC.5.L.17.1 Compare and contrast adaptations displayed by animals and plants that enable them to survive in different environments such as life cycles variations, animal behaviors and physical characteristics.
• SC.5.E.7.6 Describe characteristics (temperature and precipitation) of different climate zones as they relate to latitude, elevation, and proximity to bodies of water.
• SC.5.E.7.5 Recognize that some of the weather-related differences, such as temperature and humidity, are found among different environments, such as swamps, deserts, and mountains.

SOCIAL STUDIES:
• S.5.G.4.1 Use geographic knowledge and skills when discussing current events.
• SS.5.G.4.2 Use geography concepts and skills such as recognizing patterns, mapping, graphing to find solutions for local, state, or national problems.
• SS.5.G.1.1 Interpret current and historical information using a variety of geographic tools.
• SS.5.C.2.4 Evaluate the importance of civic responsibilities in American democracy.
• SS.5.G.1.4 Construct maps, charts, and graphs to display geographic information.

MATHEMATICS:
• MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them.
• MAFS.K12.MP.2.1 Reason abstractly and quantitatively.
• MAFS.K12.MP.4.1 Model with mathematics.
• MAFS.K12.MP.7.1 Look for and make use of structure.

ENGLISH LANGUAGE ARTS:
• LAFS.5.RI.1.3 Explain the relationships or interactions between two or more individuals, events, ideas, or concepts in a historical, scientific, or technical text based on specific information in the text.
• LAFS.5.RI.2.5 Compare and contrast the overall structure (e.g., chronology, comparison, cause/effect, problem/solution) of events, ideas, concepts, or information in two or more texts.
• LAFS.5.SL.1.1 Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 5 topics and texts, building on others’ ideas and expressing their own clearly.
• LAFS.5.SL.2.4 Report on a topic or text or present an opinion, sequencing ideas logically and using appropriate facts and relevant, descriptive details to support main ideas or themes; speak clearly at an understandable pace.
• LAFS.K12.SL.1.3 Evaluate a speaker’s point of view, reasoning, and use of evidence and rhetoric.
VOCABULARY

Aerial View / Birds Eye View / Overhead View
A view from above, with a perspective as though the observer were a bird; often used in the making of blueprints, floor plans, and maps.

Art
Objects created specifically to look at because of their beauty.

Civilian Conservation Corp (CCC)
A public work relief program that operated from 1933 to 1942 in the United States for unemployed, unmarried men from relief families, ages 18 to 25 as part of the New Deal.

Community
People interacting with each other, associated in a common location or interest. An interacting group of various species (plants and animals) associated in a common location.

Community or Urban Forest
A community or urban forest is comprised of trees and other vegetation in and around our communities, including the trees in our yards and along residential streets, in parking lots and along commercial thoroughfares, on school grounds, and in parks and open spaces.

Designed
To do or plan (something) with a specific purpose or intention in mind.

Ecosystem
The combination of living (biotic) organisms (e.g., plants or animals) interacting with each other and the non-living (abiotic) surroundings (e.g., soil, water, air) and sometimes influenced by human action (anthropogenic); short for ecological system.

Elevation view
A view from one side; a flat representation of one vertical plane often used in the making of blueprints, landscape designs, and maps.

Entropy
A measure of the disorder or randomness in a closed system; from the Greek “transformation.”

Environment
Everything, living and non-living, nature and man-made; that surrounds a plant or an animal (this includes people).
Garden
An area purposely planted and cared for; often near a house, used for growing flowers, fruit, or vegetables.

Geometry
A branch of mathematics that deals with the measurement, properties, and relationships of points, lines, angles, surfaces, and solids; from the Greek “to measure the earth.”

Landsaped
An improved aesthetic appearance of an area due to a design that changed its contours, added ornamental features, or planted trees and shrubs.

Landscape Architect
A profession committed to creating healthy, enjoyable, and secure places for the future. Landscape architecture combines art and science. It is the profession that designs, plans, and manages our land.

Model
A copy or representation of something or some idea.

Nature
The physical world and everything in it that is not made by people.

Neighborhood
A geographic location with distinctive characteristics; there may be many neighborhoods in a town or city.

River
A large natural flow of water that crosses an area of land and goes into an ocean, a lake, etc.

Sculpture
A piece of artwork that has height, width, and depth.

Sustainability
The result of taking responsible care of our world today, so our great grandchildren can do the same; Practices which recognize resources are finite, imitate, or restore natural systems and cycles, and act locally with a community.

Symmetry
Close agreement in size, shape, and relative position of parts on opposite sides of a dividing line or plane or around a central point.

Tree
Large plant with a hard stem.
WORKS OF ART & GARDENS

Entropy
About the Artist

Born in Connecticut, Riis Burwell received a BFA in Fine Arts from Goddard college in Vermont where he studied with Peter Forakis and Charles Ginnever. His work is in many corporate collections & various private collections within the United States, South America, Asia, and Europe.

Artist’s Statement:
My sculpture draws its vitality from my reverence for nature and my fascination with the opposing forces of geometry and entropy that underlie the structure of the physical world. The delicate balance between order and chaos, growth and decay of all matter intrigues and inspires me. I attempt to sculpturally express this dynamic tension in my work through the graceful juxtaposition of form and line in opposing abstract elements. Successful artistic synthesis of these forms results in sculpture infused with energy.

I have a strong preference to work in steel, stainless steel and bronze because of their permanence and inherent beauty, as well as their duality of character. They are, at the same time, utilitarian yet graceful, strong yet yieldingly flexible to the well-trained artisan, and have the ability to evoke a variety of
textures through surface treatment: from naturally rusted to smooth and
gleaming; from a soft natural patina to deep brown or black.
I do not cast any part of a sculpture, but hand-fabricate all shapes for each
particular piece. Creating sculpture provides me with a deeper connection to
the grace and beauty inherent in nature.
Upper Olmsted Garden
Designer: Connelly & Wicker Inc.

Designer’s Words:
The landscape architecture team works in conjunction with the planning and engineering groups... to create outstanding livable spaces; the group is focused on enhancing the overall experience by working with architects to blend the building & the outside environment.
Lower Olmsted Garden
About the Designer: William Lyman Phillips, 1885 to 1966

Born in West Somerville, MA, Phillips was an early student in Harvard’s landscape architecture program, from which he graduated in 1908. By 1911 he joined the Olmsted Brothers firm, where he worked on the Boston Common. He left the firm after two years and worked in a variety of roles in the U.S. and abroad as an independent practitioner and for the U.S. government. In 1925 Phillips moved to Lake Wales, FL, where he renewed his association with the Olmsted Brothers and spent the rest of his 50-year career. His work illustrated an understanding of the native Florida landscape, its unique ecosystems, and particularly its plants. Working with private clients and for the National Park Service, Civilian Conservation Corps, and Dade County he created landscapes which have helped define Florida’s image. Fairchild Tropical Botanic Garden in Coral Gables is Phillips’ best-known work. In 20 years there, he developed tropical plant collections organized by families, arranged along two formal axes with shaded walks and scenic views. His extensive body of work includes private estates, cemeteries, public thoroughfares, campus planning, Bok Tower Gardens (with Olmsted Brothers), & McKee Botanic Gardens.

Designer’s Words:
In a 1938 letter, concerning Fairchild Gardens, Phillips revealed many of his underlying design principles; He stated that “The pattern, overall, is of a piece. The lines and shapes are dominantly free, casual, irregular, naturalistic . . . effects generically similar, specifically different.” He explained that the plan he created had no “marked appearance of organization (but) . . . there are clear purposes and principles underlying it.” He described his practice of using heavily planted areas alternated with lawn or lake as “mass and void.”
Italian Garden
About the Designer: Ellen Shipman, 1869 to 1950

Around 1912, Ellen Shipman began her career as a garden designer in Cornish, New Hampshire, and gained a mentor in the architect Charles Platt. Platt’s assistant taught her draftsmanship, and from Platt himself she developed a taste for strong axial garden layouts and tight visual connectivity between house and garden. She held her own in preferring the simple clean geometries of Colonial gardens. By 1920, she had opened an office in New York City, where she hired graduates of the Lowthorpe School of Landscape Architecture. Her most noted gardens are Longue Vue Gardens in New Orleans, the Cummer Estate (now the Cummer Museum of Art and Gardens in Jacksonville, Florida), and Stan Hywet Hall in Akron, Ohio, the latter where she was recommended by Warren H. Manning. Among her rare commercial projects are Lake Shore Boulevard, Grosse Point, Michigan and Aetna Life, Hartford, Connecticut.

Designer’s Words:
Shipman wrote that “Working daily in my garden for fifteen years taught me to know plants, their habits and their needs.” She explained that “a garden became for me is the most essential part of a home.” She believed in the importance of privacy: “Planting, however beautiful, is not a garden. A garden must be enclosed ... or otherwise it would merely be a cultivated area.” She commented that she used plants “as a painter uses the colors from his palette,” and by using no more than six to eight types of flowering plants in each design, she allowed “each, (flower) in its season (to), dominate the garden.”
ACTIVITIES

ACTIVITY 1 What Room Is This?

Modified from the exercise The Rhetoric of Rooms as published in the workbook Education through Design: Middle School Curriculum, 1992, School of Design North Carolina State University and funded by the National Endowment for the Arts and the North Carolina Arts Council.

Design is important in the classroom. The way that things are placed, shaped, and colored directly affects:
- The teacher/student and student/student relationship
- Possible methods of teaching and learning

Activity:
In this activity students will realize the importance of room arrangement (design) and how it affects the process of teaching and learning.

Materials:
- a classroom with:
 - fixed attributes - size and shape, window location, orientation towards the sun, artificial lighting, ceiling characteristics
 - movable contents - teacher’s desk, students’ desks/tables, chairs, shelves, etc.
- rulers, tape measure, or yard stick
- graph paper
- construction paper
- scissors

Preparation: Working in smaller groups, each group will:
- Make a measured two-dimensional reproducible drawing of the fixed features of the classroom (graph paper, tape measure or yard stick and some technical assistance). This is an overhead or aerial view of the room (a map, a plan, a blueprint) and will include a scale of measurements (i.e.: one inch = one foot).
- Measure the “top” dimensions of the major movable objects in the room in order to construct an overhead view, and cut them to size from construction paper, color coded by type.
- Each group will have a modeling kit (plan + movable objects made of construction paper).
First Round Discussion:
- Talk about everyday room arrangements in life; home, school, community places. Talk about the current room arrangement and how it is used.
- Either on the board or have the students, on a copy of their plans, sketch out behavioral or activity areas in the room. Where are the students, the teacher, where do they walk, who sits together? Ask how the students feel about the room design, is it “good”? How would they change the arrangement and how would that change room behavior?

First Round Action:
- In their groups, students work out their own room solutions using their modeling kits.
- Once a solution is agreed upon in the group, the group should present written description and reasons for their design. How do they think that their design will affect the learning/teaching process and classroom interactions?

Second Round Discussion:
- The class as a whole decides on how to score the solutions for choosing the most effective plan.

Second Round Action:
- Each student makes their own score for each plan.
- Scores are totaled and the winning plan is displayed for possible refinement.

Third Round Action:
- Students consult the plan; including measurements.
- Students then rearrange the room accordingly and “use” it.

Third Round Discussion:
- As the new arrangement is used and experienced, discuss whether it works as predicted or if further modifications are needed.
- Evaluate the sight, sound, and emotional feel of the “new” space as well as if the behavioral or activity areas have changed.
ACTIVITY 2 PersonSpace: Thinking of a Space as a Person

Modified from the exercise PersonPlace as published in the workbook Education through Design: Middle School Curriculum, 1992, School of Design North Carolina State University and funded by the National Endowment for the Arts and the North Carolina Arts Council.

Finding “that” connection to a space that transforms it into a place is important in all design efforts.

In perceiving physical spaces we:

- Familiarize that space with personal experiences.
- We often name or even “personify” that space (or thing) by giving it human characteristics and feelings. (Have you named your car or special hide-away?)

Activity:
In this activity students will consider a piece of the physical world as a person, and give it all the attributes of human character. They will then switch perspectives and become that “personsplace.”

Materials:
- large sheets of paper and colored markers for presentation
- Activity Sheet: PersonSpace (pg. 17) with directions and questions

Structure:
This activity may be done as individuals or in groups and can be completed in either two class periods or as a take home assignment with a presentation in the classroom.

Action:
- Have students complete the activity sheets.
- Have students make a poster about their “personsplace”, making sure to answering the questions from the activity sheet
- Have students present their “personsplace” to the class.

Discussion:
- Talk about each presentation.
- Did the students have a different feeling about the space then they did before?
Activity Sheet: PersonSpace

Choose your PersonSpace:

school entrance
library/media center (school or public)
grocery store
Italian Garden at The Cummer Museum
outdoor areas (park, parking lot, sidewalk, bus stop)
other spaces

Develop the Character of your PersonSpace:

How were you born?
Who are your parents?
How old are you?
What is your name?
Do you have a nickname?
Do like to be alone?
Do you like visitors?
Are you polite to people?
Are people polite to you?
Who do you like; dislike?
What do you like to do?
What are you favorite activities?
What are your favorite time, day, and season?
Other?

PersonSpace In Depth (analysis):

Why are you here?
What kind of shelter are you for people?
How do you influence people with you character?
How do people change when they come in contact with you?
Who can help you be better?

Presentation of your PersonSpace:

Make a poster about your “personspace”, answering the questions from the activity sheet, for presentation to the class.
ACTIVITY 3 Landscape Architects and the Community Forest

Modified from the exercise What is an Urban Forest? As published in California Arbor Week March 7-14 2014 Lesson Plans & Contest Rules. Sponsored by California ReLeaf, California Department of Forestry and Fire Protection & California Community Forests Foundation.

A landscape architect may use a single natural element to alleviate a problem or enhance a space. Trees (of all types) are one such element and contribute to a community forest.

Activity:
Students will realize the impact of a single design element, in this case a tree, and how it contributes to the overall benefit of the design for people and the environment.

Background:
A community forest is comprised of trees and other vegetation in and around our communities; trees are in our yards and along residential streets and commercial thoroughfares, in parking lots, on school grounds, and in parks and open spaces.

Community forests are integral to the ecological, economic, and social well-being of our communities. They clean our air and water to save energy through cooling shade, raise property values, add to neighborhood pride, provide places for children to play, and provide homes and food for wildlife. When selected, planted, and cared for properly, trees improve the quality of our lives for decades to come.

Materials:
- Activity Sheet: A Tree for the Community (pg. 20)
- pencils

Discussion:
Have students think about and discuss all the trees they see on a daily basis. Thinking on how they use trees, have students imagine a world without trees.

Action:
Students will be given eight trees to plant in a community where no trees exist. Using the Activity Sheet, students will plant (draw) their eight trees where they feel the trees would be most beneficial. Have the students number their trees as they draw them and then describe their rationale below the map.
Activity Sheet: A Tree for the Community

Plant (draw) 8 trees in this community; choose the best location for each tree. Number the trees you place on the community map and describe why you planted the tree in that particular location.

1. __________________________
2. __________________________
3. __________________________
4. __________________________
5. __________________________
6. __________________________
7. __________________________
8. __________________________
ACTIVITY 4 Looking Forward

Inspired from the content stop sprawl Community Transformation Examples as published on the website Sierra Club stopping sprawl http://vault.sierraclub.org/sprawl/

The landscape architect looks at what could be when they design. A good design will lessen sprawl and promote smart growth in a community, which:
- improves air and water quality and protects open space.
- redirects investments to our existing towns and cities to revitalize sprawling communities.

Activity:
In this activity students will realize the importance of forward thinking, planning, and design by exploring urban sprawl and smart growth.

Materials:
- students own or supplied images of a given area in their community
- acetate sheet
- markers

Background:
Urban sprawl spreads development out over large amounts of land; requiring more paved roadways and highways to accommodate increased traveling distances and times. More roads increase smog and pollution from water runoff. Sprawl encroaches on and destroys more than two million acres of parks, farms, and open space each year.

Smart growth promotes clean public transportation and plans for pedestrian-friendly developments where people have transportation choices, including good walking and bicycling facilities around shopping and parks. Innovated designs build housing close to transit and jobs.

Discussion:
Students will discuss the concept of urban sprawl and give examples of it in their community. Students will verbalize ideas on what smart growth looks like.

Action:
- Students will examine the four pictures of Kendall, Florida (pgs. 22 and 23) to see how a forward looking design can shape a community.
- Students will create their own future design on an image of urban sprawl in their community, using either four copies of an image from their community or by overlaying and drawing on an acetate sheet on one copy of that image.
Community Transformation Examples
http://vault.sierraclub.org/sprawl/community/transformations/index.asp

How does our built environment affect the look, feel and quality of life in our communities? These computer-generated simulations show the difference between sprawl and smart growth and demonstrate how sprawling communities can be revitalized and made more livable.

Kendall, Florida – existing conditions

Light rail added
Community Transformation Examples
http://vault.sierraclub.org/sprawl/community/transformations/index.asp

Trees added

Street-oriented, mixed-use development added
ACTIVITY 5 Explore the Word: the Frayer Model

Using the Frayer Model (see example below), students will define two important words from the packets vocabulary list: designed and sustainability. The Activity Sheet (pg. 25) may be cut out and glued into science notebooks.

This activity can also serve as an assessment for students to demonstrate their understanding of the vocabulary terms.

<table>
<thead>
<tr>
<th>Definition (In your own words)</th>
<th>Facts/Characteristics</th>
</tr>
</thead>
</table>
| A simple, closed, plane figure made up of three or more line segments | • Closed
• Simple (curve does not intersect itself)
• Plane figure (2D) |

<table>
<thead>
<tr>
<th>Polygon</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Nonexamples</th>
</tr>
</thead>
</table>
| • Rectangle
• Triangle
• Pentagon
• Trapezoid
• Hexagon | • Circle
• Cone
• Arrow (ray)
• Cube
• Letter A |
Activity Sheet: Explore the Word: the Frayer Model

<table>
<thead>
<tr>
<th>Definition</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Non-examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGNED</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Non-examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUSTAINABILITY</td>
<td></td>
</tr>
</tbody>
</table>
SUPPLEMENTAL INFORMATION

Landscape Architecture

Landscape architecture is a profession committed to creating healthy, enjoyable, and secure places for the future. Landscape architecture combines art and science.

It is the profession that designs, plans, and manages our land. Landscape architecture has strong roots in the United States and early examples, such as Thomas Jefferson’s Monticello, are still much admired. The actual term landscape architecture became common after 1863 when Frederick Law Olmsted and Calvert Vaux designed New York’s Central Park.

WHAT DOES A LANDSCAPE ARCHITECT DO ON THE JOB?
Landscape architects deal with the increasingly complex relationships between the built and natural environments. Landscape architects plan and design traditional places such as parks, residential developments, campuses, gardens, cemeteries, commercial centers, resorts, transportation facilities, corporate and institutional centers, and waterfront developments. They also design and plan the restoration of natural places disturbed by humans such as wetlands, stream corridors, mined areas, and forested land. Their appreciation for historic landscapes and cultural resources enables landscape architects to undertake preservation planning projects for national, regional, and local historic sites and areas.

WHAT SKILLS DOES A LANDSCAPE ARCHITECT NEED?
- Sensitivity to landscape quality
- Understanding of the arts and a humanistic approach to design
- Ability to analyze problems in terms of design and physical form
- Technical competence to translate a design into a built work
- Skills in all aspects of professional practice including management and professional ethics

WHAT ARE THE EDUCATION AND LICENSING REQUIREMENTS?
A formal education is essential to gain the skills and knowledge to become a landscape architect. Professional education in landscape architecture can be obtained at the undergraduate or graduate level. There are two undergraduate professional degrees. These usually require four or five years of study in design, construction techniques, art, history, natural, and social sciences.
At present, 49 states license (or register) landscape architects. Each state sets its own requirements for registration, but all require candidates to pass a national examination (the Landscape Architect Registration Examination, or LARE).

WHERE DO LANDSCAPE ARCHITECTS FIND JOBS AFTER GRADUATION?
Landscape architects are employed in private, public, and academic organizations. Private sector opportunities are found within landscape architectural, engineering, architectural, and planning firms. Landscape architects may also work with other types of private corporations that have physical planning departments, or offer products and services related to land planning and development. Public sector employment opportunities are found within federal, state, regional, and municipal agencies involved in land planning, development, and preservation. Landscape architects in academic practice teach and conduct research in the professional programs offered by colleges and universities across the country.

WHAT IS A LANDSCAPE ARCHITECT’S SALARY?
Landscape architectural salaries vary depending on the years of experience, geographical location, and type of position. In 2007, the average salary for entry-level landscape architects was $41,500, while in 2006 that of experienced practitioners was $89,700.
Biographies
These landscape architects either directly contributed to the Gardens at the Cummer Museum or indirectly contributed by their influence on those who did.

O.C. Simonds, 1855 to 1931
A founding member of the American Society of Landscape Architects, Simonds was educated as an architect and civil engineer, he preferred to call himself a landscape gardener. Early design work in Chicago led to his appointment as superintendent of Graceland Cemetery, a project which cultivated his strong conviction that the best landscape design is inspired by nature, informed by local landforms, & constructed using indigenous plant materials. In his 1915 publication of *The Prairie Spirit in Landscape Gardening*, Wilhelm Miller credits Simonds, Jens Jensen, and Walter Burley Griffin as creators of the Prairie Style. Simonds, response, simply advocated the designer's responsibility to create the most beautiful effect possible, responsive to the site. His design accomplishments are many, throughout the U.S.; particularly in the Midwest. They cover a breadth of landscape types, from residential design, estates, and boulevards to college campuses, parks, and cemeteries. Simonds' treatise, *Landscape Gardening*, published in 1920, is the best record of his design philosophy & his self-appointed role as defender of the native American landscape. His notable projects include Sinnissippi Farm, Oregon, IL; the Morton Arboretum, Lisle, IL; Frick Park in Pittsburgh; Washington Park, Springfield, IL, and Palmer Park and Subdivision in Detroit.

Olmsted Brothers, 1898 to 1980
In 1898, after the retirement of their father, Frederick Law Olmsted, Sr., Frederick Law Olmsted, Jr. and his half-brother, John Charles Olmsted, formed the Olmsted Brothers firm. Significant firm projects include the 1906 Lewis & Clarke Exposition in Portland, OR and 1909 Alaska-Yukon-Pacific Exposition in Seattle. The pair terminated the firm's involvement in the 1915 San Diego Exposition rather than despoil the natural landscape of Balboa Park with planned structures.

Frederick Law Olmsted, Sr., 1822 to 1903
Unsurpassed in the field of landscape architecture, Frederick Law Olmsted, Sr., defined and named the profession and designed many of America's most beloved 19th century parks and landscapes, including New York's Central Park, Brooklyn's Prospect Park, the Biltmore Estate, and the U.S. Capitol grounds. His commitment to public works stemmed in part from his abolitionist stance: by creating elegant and equitable public spaces for all, he hoped to show the inherent beauty possible in a free society. During his remarkable 40-year career, beginning in the mid-1850s, Olmsted and his partners and employees created the first park systems, urban greenways, and
suburban residential communities in this country. He and his colleague, Charles Eliot, were pivotal figures in the movement to create scenic reservations to preserve natural treasures such as Yosemite, Yellowstone, and Niagara Falls. His collaborations with Charles Eliot, Calvert Vaux, Warren Manning, and his sons, John Charles and Frederick, Jr., allowed his influence to continue long past his retirement in 1895.

Jekyll, Gertrude, 1843 to 1932

English garden-designer and writer; she is particularly remembered for her books on horticulture (influenced by William Robinson) and for the various gardens she planned with Lutyens. Lutyens designed Munstead Wood, Surrey for her, where, prompted by her Arts-and-Crafts background she laid out a cottage style garden of old fashioned flowers, doing away with carpet bedding, topiary work, box edging, and so on, in favor of a completely informal approach. She made the herbaceous border famous, and she herself became a household name. She designed some 300 gardens, about 100 of them with Lutyens One of her best gardens, designed independently of Lutyens, was Barrington Court, Som.
RESOURCES

Reading Resources:
- *Keeping a Nature Journal* by Clare Walker Leslie and Charles E. Ross
- *Sharing Nature with Children* by Joseph Cornell
- *Nature for the Very Young A Handbook of Indoor & Outdoor Activities* by Marcia Bowden
- *Handbook of Schoolyard Plants and Animals of North Central Florida* by Peter Feinsinger and Maria Minno
- *Sky Tree: Seeing Science Through Art* by Thomas Locker
- *Greening School Grounds: Creating Habitats for Learning* by Tim Grant and Gail Littlejohn
- *The Nature of Florida’s Neighborhoods Including Bats, Scrub jays, Lizards and Wildflowers*
- *The Scoop of Soil* by Natalie Rosinsky
- *A Mirror to Nature: Poems About Reflection* by Jane Yolen

Music Resources:
- *Forest Sounds* by Tracks of Nature
- *The Pines of Rome* by Ottorino Respighi
- *Ancient Airs and Dances* by Ottorino Respighi
- *Appalachian Spring* by Aaron Copland
- *Carnival of the Animals* by Camille Saint-Saens
- *Around the Campfire* by Peter, Paul, and Mary

Internet Resources:
- American Society of Landscape Architects - www.asla.org
- NGA (National Gardening Association) Youth Gardening - www.kidsgardening.org
- Landscape Online - www.landscapeonline.com
- Children and Nature Network - www.childrenandnature.org
- The Cultural Landscape Foundation - tclf.org
- Introduction to the Nature Journal, Smithsonian in Your Classroom - www.SmithsonianEducation.org
- North American Association of Environmental Educators - www.naaee.org
- Project Learning Tree - www.plt.org
- Project WET - www.projectwet.org
- Acorn Naturalists - www.acornnaturalists.com
- Flower parts and pollination - makemegenius.com/video_play.php?id=8&type=0
School Tour Sponsors:
Ida Broward Boyd and Crowther Mann Boyd Endowment
Cummer Amelia
Cummer Beaches
Holland & Knight LLP
Main Street America Group
TIAA Bank
The Rea Charitable Trust
The Rayonier Advanced Materials Foundation
The Dianne T. and Charles E. Rice Family Foundation
J. Wayne and Delores Barr Weaver

Cummer Museum of Art & Gardens
829 Riverside Ave
Jacksonville, FL 32204
www.cummermuseum.org
904.355.0630